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ON INTEGRATION OF KINEMATIC EQUATIClNS OF 

A RIGID BODY'S SCREW-MOTION * 
Iu. N. CHELNOKOV 

The kinematic equations of a rigid body screw-motion are examined in parameters the 
complex combinations of which are components of the biquaternion of the body screw- 
motion. The structure of the general solution of the kinematic equations is estab- 
lished, and a case of their integrability in quadratures is investigated. 

1, As is well known, an arbitrary spatial motion of a rigid body is equivalent to a screw- 
motion. We introduce two coordinate systems: system O*Y1Y2Y&Y) attached to the body and a 
support system OIXIXzX,(X), the two coinciding at the initial position. A finite displace- 
ment of the attached coordinate system Y relative to the support system Xis defined by the 
dual vector of finite screw-motion /I/ 

Q = 2E tg (0/Z) 
Here E is a unit screw turn of axis ab of the screw-motion,@ -_ cp + smQis the dual angle of 
turning of the body, cp is the ordinary angle of turn of the body about the axis ab,cp” is the 
translational motion of the body along this axis, s is the Clifford symbol, s2= 0. We associ- 
ate with the screw-motion 8 the eigenbiquaternion 11, i.e., a biquaternion /1,2/ whose compon- 
ents are the dual Rodrigues- Hamilton parameters A,(j = 0, 1, 2, 3) 

A = h,Z + A$, -I- A& i- A&B 
Here 1, i,,i17 i, are unit vectors of a hypercomplex space /3/, and the quantities I%, are dual 
analogs of the real Rodrigues- Hamilton parameters /3-55f defined by the relations 

Ae = co9 (0 /*2), Ai = Sin (a, / 2) COS Sr (i = i, 2, 3) 

in which ri =yi +.syi" is the dual angle betweentheaxisofscrew-motioneand the axis 0,X, 
(O~Y,)/I./, yi is the ordinary angle between axes ab and &Xi, and yzO is the shortest distance 
between axes ab and O,Xi. 

Using the expressions for the trigonometic functions of a dual angle /l/, we represent 
the parameters Aj(j= 0,1,2,3) as complex combinations of the real quantities hj and h,"(j ~0, 
1 n n\ 

A) = h, -I- sk; (j = 0, 1, 2, 3) 

Here h, are real Rodrigues-Hamilton parameters defined by the relations /3-55/ 

5 = GOS (m/ z), hi = sin (Cp/ 2) COS y; (i = 1, 2, 3) 

The quantities hj" are defined by the relations 

Cl.11 

(1.2) 

(i = 1,2,3) 

We call the quantities hj and hj"(j = O,l, 2,3) th e parameters of the rigid body screw-motion. 
With due regard to equalities (1.1) the eigenbiquaternion A assumes the form 

A = k -+ Sh", h = iLg f I.,,, h, = hlil $- : 1 h i -!- h,i,, 
kc =i hd” + h”“, h,” = h:i, + h,“i% $- hzoiJ 

Here h and h' are eigenquaternions. The generator of the instantaneous screw-motion velocity 
U (the kinematic screw) of the ridid body, relative to pole O2 ( we can take for it, 

for example, the body center of mass) is equal to the dual vector u+sv ill. Here v is the 
velocity vector of point & of the body relative to basis X,w is the body angular rotation 
velocity vector in basis X. Therefore, the dual orthogonal projections Eig (i = 1,2,3)of the 
kinematic screw U on the axis of the attached coordinate system are 

Ui = Wi + SYi {i = I, 2*3) (1.3) 

where Oi and vi are the projections of vectors o and v on the attached axis OeY+ 
To obtain the kinematic equations of the rigid body screw-motion, which establish the 

dependence between the dual Rodrigues-Hamilton parameters, their derivatives, and the dual 
c- 
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orthogonal projections of the kinematic screw on the axes of the attached trihedron, we apply 

the Kotel'nikov-Study transference principle /l/ to the kinematic equations of the body 

spherical motion in terms of real Rodrigues-Hamilton parameters /3-55/. We write the equa- 

tions thus obtained in two equivalent matrix forms 

Here the dot denotes differentiation with respect to time t and the index 1' is the transposi- 

tion symbol. The kinematic Eqs. (1.4) of the body screw-motion are dual matrix homogeneous 

linear differential equations with variable coefficients. In the first of Eqs. (1.4) we pass 

from the dual Rodrigues-Hamilton parameters to the real parameters of the body screw-motion 

using Eqs. (1.1) and (1.3). This results in splitting the dual equation into two real equa- 

tions 28' = n,,O, 28 = n&J + /,&I (1.5) 

OT = II h", a,, hz, h, /I, 0"' = /I h,", h,c, hZ1, h,"il 

Here the matrices n, and n, have the structure of matrix N,, and are composed of the projec- 

tions Oi and vi (i == 1, 2, 3) of vectors 61 and v on the attached basis. 

The first of Eqs. (1.5) is the matrix kinematic equation of the body spherical motion 

about point 0, in real Rodrigues-Hamilton parameters. It is independent of the second equa- 

tion. The second of Eqs. (1.5) depends on the first but, in Constrast to it, is inhomogene- 

ous, defining the translational motion of the body together with pole Oz. Equations (1.5), 

as well as each of the dual equations (1.4), enable us to determine the body's screw-motion 

from specified projections of vectors (1) and v on the attached basis and from specified initial 

conditions for parameters hj and i,i'. The Rodrigues- Hamilton parameters JLj define the body 

orientation in the support coordinate system, to determine the translational motion of the 

body it is necessary to use the following formulas:, j 

*i, Y, = 2 ( hohi” -- h,,;h, :t_ ; 2 ez,,,h;hi,O ) 
(1.6) 

J-,1:=1 
(i = 1, 2, 3) 

Here zi and Yi(i = 1,2,3) are the projections of the radius vector I‘ drawn from the origin 0, 

of the coordinate system X to pole 0, on the axis of the support basis X and of the attached 

basis E'; sijh is the Levi-Civita symbol /4/; the plus sign corresponds to Si and the minus sign 

to Y,. In quaternion notation formulas (1.6) become 

I‘x = 2a"0h* = 2(h,h"" ~ h,"l" + I" x &") (1.7) 

ry = 2b'CG?." = 2(h"?",o -- hR1, -- I, x I.,") 

Here rx = X,i, i- &.-i- & and rr _ y,i, -I- y2i4 -+- y,i, represent hypercomplex mapping of vector r 

onto the support and the attached bases /3/; The quaternion h* is adjoint to quaternion )" : 
?.* = h, - h,; the symbol 0 denotes quaternion multiplication; >,,. and h," are the vector-valu- 

ed parts of quaternions a and a'; the scalar-valued parts of quaternions I'oh* and h*oh" are 

zero, since h,h$ -I- h,h," ~I- ?&20 )~ h&y 10. 

Fig.1 

2, Let us prove formulas (1.7). A finite displacement of the body is equivalent to one 
of two sequences of motions (Fig-l): 

1) the sequence of the body translational motion at the velocity of pole OS, defined by 
the screw-motion eP = 2E, tg(@,,/2) ~z 2E,tg(s(p,“/2), and of the body spherical motion about pole O?, 

defined by the screw-motion 9,,= 2E,tg(@,,/2)= 2E,,tg (&2); 

2) the sequence of the body spherical motion about pole O?, defined by the screw-motion 

8,,' = 2%,' tg (~,/2), and of the body translational motion defined by the screw-motion 8,. 
We illustrate what we have said by the conventional scheme 

Here cu is the equivalence symbol. With the screw-motions e, and 0,, for the first sequence of 
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displacements and the screw-motions &land 6, for the second we associate the eigenbiquatern- 

ions P, H and H’,P’ 

P = 1 + sp’, P’ = 1 f sp”‘, H = h, H’ = II’ 

z=z,+ zlil + zpiz + z&; z = p”, p”, h, h’ 

By the Kotel'nikov-Study transference principle /l/ the eigenbiquaternion A of the resulting 

finite displacement is determined in terms of the eigenbiquaternions of the component displace- 

ments by a rule that is the dual analog of the rule for finding the eigenquaternion of the 
resulting turn from the eigenquaternions of the component turns /3/. Therefore A= PmH :~ 
H’oP’ and consequently, 

k + sl" = (1 + sp”) o h = h’o (1 ;m sp”‘) 

Hence we obtain 

h = h’ = 1, pr z I’ o a*, pC’ = h* o 1: (2.1) 

The components pjo and pj"'(j = 0, 1,2,3) of quaternions p’ and p” are found from formulas 

analogous to (1.2). It should be born in mind that for the motion 9, being examined the 
translational motion VP'= r, the angleof turn 'pp, and the shortest distance /3io(fii"') between 

axis &Xi(%YJ and the axis of screw-motion e, are zero, and the direction cosines cospi and 

cos pi'(i = 1,2,3) between the axis of screw-inotion C+, and the axes of the support basis X and 

of the connected basis Yequal the corresponding direction cosines of vector r in the same 

bases because the axis of screw-motion e,, passes through the origin of coordinate systems X 

and Y and coincides with the straight line on which vector r lies. Therefore 

p'=+gsiii., p”‘=+flykia 
k=l k=l 

2k = r cos ok, yk = r cos flk’ 

(2.2) 

From (2.2) we see that the hypercomplex images rr and ry of vector r are related to quatern- 

ions p" and pa' by the equalities rr = 2p”, ry = 2p”‘. Then allowing for (2.11, we obtain form- 

ulas (1.7). Note that, if one of the hyper-complex images of vector r, say rr, has been 
established, its other hypercomplex image ry can be found by using the following coordinate 

transformation rule for a fixed vector on the support and attached bases /3/ 

ry=k*0rx0L 

Having substituted the equality rx= 2h"0&* into this relation, we arrive at an expression 

for rr, which coincides with the second expression obtained in(1.7). 

3, Let us consider the integration of the first matrix dual kinematic equation in (1.4) 

for the body screw-motion. In this equation we assume that the elements Ui = oi + svI of the 

dual matrix of coefficients N,are known time functions, since the projections oi and vi of 
vectors Q and v on the axis attached to the body can either be measured or be obtained, for 

example, from a navigation system. The structure of the general solution for the first equat- 
ion in (1.5) has been indicated in /6/. On the basis of the Kotel'nikov-Study transference 

principle we extend this result to the first equation in (1.4), which is the dual analog of 

the first equation in (1.5). As a result we obtain the following structure for the general 

solution 8 = e(2) of the first of Eqs. (1.4). 

(3.1) 

Here %r = 6* (to) = II AoO, A,,, Aao, A,,IIT and N+ is the matrizant of the second dual matrix eq- 

uation in (1.4). It is made up of elements Aj'(i= O,l, 2,s) and has the structure of matrix &. 

Applying the Kotel'nikov-Study transference principle to another result in /6/, concern- 

ing the integrability of the first equation in (1.51, we establish that the first equation in 

(1.4) can be integrated in quadratures when the kinematic screw 

U = F (t) DIE,’ + Q1 (cos (A i- B) E,’ + sin (A + B) Es’)1 (3.2) 

A (t) = ‘41 J F(t) dt 
to 

Here Ei'(i = 1, 2, 3) are unit screw-turns of the attached coordinate system; D, = d, + sdl”, 
a = q1 + sq1”. A, = CL1 + sap, B = f3+ sr are certain dual constants; F((t)=f(t) f@(t) is an 

arbitrary dual time function bounded and integrable on the interval It,, t,] being examined. To 
a kinematic screw of form (3.2) correspond the body angular rotation velocity vector o and the 
velocity vector v of pole O,, of the form (el, &, e, are unit vectors of the connected trihed- 

ron 0 = f (t)ld,e,' + q1 (en’ cos r + e3’ sin T)I 

v = de, + (6’ cos z - c’ sin z)ez’ + (b’ sin z + c' cos z)P~' 

a' (t) = d," f (t) i W(t), b' (t) = q1° f (t) + Q(t) 
+ 

-c (t) = a1 j I (t) dt + P, c’ (t) = 
to 



22 Iu. N. Chelnokov 

The general solution of the first of Eqs. (1.4) for a kinematic screw of form (3.2) is given 

by relation (3.1) in which the elements -\j+ (i = 0, 1, 2, 3) of matrix N+ are 

(3.3) 

K = U’s F’(t)&, u’ = [(n, + A,)? I Q,‘I’,~ 
tu 

This general solution is the dual analog of the general solution obtained in /6/ for the first 

of Eqs. (1.5). 
The following are particular cases of the integrability of the first equation in (1.4). 

1) The kinematic screw U of the body performs a conic motion relative to the attached 

coordinate system. This case obtains if we set P(t) = 1 and B = (1 in the expression (3.2) for 

the kinematic screw. Then 

u = D,E,' Q, {cos 1‘4, (t - &JlE,’ + sin [A, (1 - &))]&') 
o =: d,c,' 'il (cos la, (t -~ to)]e2' -; sin [cl, (I - tJ]r,,') 

" : d,Oe,' {cll" ros Ia1 (t - to)1 - ‘~~a,’ (t - to) sin [a1 (t -- t,,,];~~’ -: 
(rl,” sin 1% (t - I”)1 'i,Z," (t - to) cos [XI (1 - t")])e:,' 

To obtain the general solution of the first equation in (1.4) we also have to set I;(1)=- 1 and 

B =Oin (3.3) as well. 

2) The kinematic screw U of the body retains a fixed position in the attached coordinate 

system, changing only in modulus. In this case the kinematic screw U is obtained from (3.2) 

with ‘41~ 0 

To this kinematic screw correspond the body angular velocity vector (IJ and the velocity vector 

I- of pole 0, of the body, which are of the form 

c, 1 (ll:d,l',' m'~ <iI (esI' COi !: + r;' 4iil BJ] (3.5) 

Y Id, I(0 ( d,/“if)lr,’ 1. ((1’ c 05 fi -~ b’ I-ill file*,' ~ (a’ -1~1 Is b’ co.- pja ,’ 

CL’ (1) I,! ! (iI 1. ‘ill’ if). h’ (I) y,O”i (ii 

Let us consider in detail the conditions to be imposed on vectors o and v, under which 

the kinematic screw of the body retains its position in the attached basis but can change its 

modulus. The dual direction cosines of the screw Ii of form (3.4) in the axes of the attached 

base are defined by the equalities 
c<is Ui M,, li c‘~ ~. c SC 1 1 1 (i =-= l,‘, 3) (3.6) 

Here ti (C’,: -:- 1r22 :- L.,32)c ’ is the dual modulus of screw U, l', are dual constants expressed in 

terms of the dual constants /),,(),.B;I', and i;' are real constants defined in terms of constants 

d,, 'il, B, &'. ri, 1: . From (3.6) and (1.3) we obtain 

cos Hz =m c, -IX," = w-'Oi 1 s [“C”‘, -co-3 (0.v; ‘“,,, (4, == 1 0, ; 7~ 1 (3.7) 

From (3.7) we find 
Il)_'W u, (,)-Iv- @(O.$O _ en (3.8) 

Here c and c‘ are vectors fixed in the attached coordinate system, whose projections on the 

axis of this basis are equal (, and c,' (I ~ 1, ?, :3). Scalar multiplication of both sides of the 

second of Eqs. (3.8) by vector o, yields c".w= 0. Since generally , ]c']#O and lel#=(J 
hence vectors cD and e are perpendicular. We construct the vector 

,<i-'\. z P I,, l) (I)-? (u,.\., 0 

Vector co is constant in magnitude and retains its direction in the attached basis. In this 

basis the vector 1) is constant in direction but variable in modulus. The hodograph of vector 

w-I\. is a straight line parallel to vector Q lying in the plane formed by vectors P and 11 (co). 
This plane is fixed relative to the attached coordinate system. In the general case thevector 

v , whose in direction coincides with that of vector O-IV, generally changes its orintation 
relative to the attached system. Thus, in order that thekinematicscrew U of the body retains 
its position in the attached system, while being able to change in modulus, it is necessary 

and sufficient that the body angular velocity vector o retains its direction in the attached 
coordinate system, i.e., that the first equality in (3.8) be fulfilled and that the velocity 
vector v of the body pole o2 satisfies the second equation in (3.8), in which (:r is some 

vector constant in the attached coordinate system, and is perpendicular to vector (I). In this 
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case the hodograph of vector O-IV is a straight line parallel to vector o and vector v, in 

contrast to vector 0, can change not only its modulus but also its direction with respect to 

the attached trihedron. 

Note that for the fulfilment of conditions (3.8) it is sufficient that vectors o and v 

retain theirorientation unchanged in the attached basis and their moduli be directly propor- 

tional. The expressions for vectors o and v in this particular case are obtained from form- 

ulas (3.5) with f(t) =f"(t). The general solution of the first of Eqs. (1.4) for a kinematic 

screw of form (3.4) is given by relation (3.1). The dual elements Aj+ of the matrix N+ in 

(3.1) are obtained from formulas (3.3) with A,=O. 

Passing from the dual quantities to real ones, we find that the real Rodrigues-Hamilton 

parameters define the body's orientation in the support basis are determined in this case by 

the matrix relation 
II ?*o, L L A, IIT = II &lo, J.,,, x*0, h,, 11 n+T 

in which the matrix II+ is composed of elements 

(3.9) 

The moment-valued parts %"+of the dual parameters Aj+, that define the body translational mot- 

ion, have the form 
Ir,O+ = -'I2 (r" sin (q/2) (3.10) 

hp+='/,cp"w-'Wicos(cF/2)~t- [W-'vi- o+(e.\.)Wi]sin (q/P) 

t t 
cp=Sodt, q”= Sc_r’(w.qit 

to to 

Using the second formula in (1.7) and the rule for finding the eigenbiquaternion of the result- 

ing displacement in terms of the eigenbiquaternions of the component displacements, we find 

that 
ry = r,r.+?~W%5"+ 

(3.11) 
Here rllr is the hypercomplex mapping of vector rO= r(ta) onto the connected basis; h+and b"+ 

are quaternions whose components are the quantities hj+ and h,"+(j= 0, 1, 2, 3). As follows from 

(3.9) and (3.10), the vector-valued parts of quaternions li+ and b"+ are defined in the attach- 

ed basis. The hypercomplex images rY and ?0Y are defined in this same basis. Therefore, the 

unit vectors i,, i,, i, of the hypercomplex space can be combined with the unit vectors of the 

attached basis. Equality (3.11) then becomes a usual vector equality. Transforming it with 

due regard to (3.8)-(3.10), we obtain 
r = r0 ~- q'c -1. sin-cpr” -’ 2 sin* (q/2) co x e (3.12) 

Thus, Eqs. (3.9) and (3.12) describe the motion of the rigid body when its kinematic screw U 

is of form (3.4), i.e., when vectors wand Y satisfy conditions (3.8). 
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