ON INTEGRATION OF KINEMATIC EQUATIONS OF A RIGID BODY'S SCREW-MOTION *

IU. N. CHELNOKOV

The kinematic equations of a rigid body screw-notion are examined in parameters the complex combinations of which are components of the biquaternion of the body screwmotion. The structure of the general solution of the kinematic equations is established, and a case of their integrability in quadratures is investigated.

1. As is well known, an arbitrary spatial motion of a rigid body is equivalent to a screwmotion. We introduce two coordinate systems: system $O_{2} Y_{1} Y_{2} Y_{3}(Y)$ attached to the body and a support system $O_{1} X_{1} X_{2} X_{3}(X)$, the two coinciding at the initial position. A finite displacement of the attached coordinate system Y relative to the support system X is defined by the dual vector of finite screw-motion /1/

$$
\theta=2 \mathrm{E} \operatorname{tg}(\Phi / 2)
$$

Here E is a unit screw turn of axis $a b$ of the screw-motion, $\Phi=\varphi+s \varphi^{\circ}$ is the dual angle of turning of the body, φ is the ordinary angle of turn of the body about the axis $a b, \varphi^{\circ}$ is the translational motion of the body along this axis, s is the Clifford symbol, $s^{2}=0$. We associate with the screw-motion 9 the eigenbiquaternion \mathbf{A}, i.e., a biquaternion / $/ 2$ / whose components are the dual Rodrigues-Hamilton parameters $\Lambda_{j}(j=0,1,2,3)$

$$
\Lambda=\Lambda_{0} 1+\Lambda_{1} i_{1}+\Lambda_{2} i_{2}+\Lambda_{3} i_{3}
$$

Here $1, i_{1}, i_{2}, i_{3}$ are unit vectors of a hypercomplex space $/ 3 /$, and the quantities Λ_{j} are dual analogs of the real Rodrigues-Hamilton parameters/3-5/ defined by the relations

$$
\Lambda_{0}=\cos (\Phi / 2), \quad \Lambda_{i}=\sin (\Phi / 2) \cos \Gamma_{i} \quad(i=1,2,3)
$$

in which $\Gamma_{i}=\gamma_{i}+s \gamma_{i}^{\circ}$ is the dual angle between the axis of screw-motion θ and the axis $O_{1} X_{i}$ $\left(O_{2} Y_{i}\right) / 1 /, \gamma_{i}$ is the ordinary angle between axes $a b$ and $O_{1} X_{i}$, and γ_{i}° is the shortest distance between axes $a b$ and $O_{1} X_{i}$.

Using the expressions for the trigonometic functions of a cual angle / $/ 1$, we represent the parameters $\Lambda_{j}(j=0,1,2,3)$ as complex combinations of the real quantities λ_{j} and $\lambda_{j}(j=0$, 1, 2, 3)

$$
\begin{equation*}
\Lambda_{j}=\lambda_{j}+s \lambda_{j}^{\circ}(j=0,1,2,3) \tag{1.1}
\end{equation*}
$$

Here λ_{j} are real Rodrigues-Hamilton parameters defined by the relations /3-5/

$$
\lambda_{0}=\cos (\varphi / 2), \quad \lambda_{i}=\sin (\varphi / 2) \cos \gamma_{i}(i=1,2,3)
$$

The quantities $\lambda_{j}{ }^{\circ}$ are defined by the relations

$$
\begin{align*}
& \lambda_{0}^{\circ}=\varphi^{\circ} \frac{\partial \lambda_{0}}{\partial \varphi}=-\frac{1}{2} \varphi^{\circ} \sin \frac{\varphi}{2} \tag{1,2}\\
& \lambda_{i}^{\circ}=\varphi^{\circ} \frac{\partial \lambda_{i}}{\partial \varphi}+\gamma_{i}^{\circ} \frac{\partial \lambda_{i}}{\partial \gamma_{i}}=\frac{1}{2} \varphi^{\circ} \cos \frac{\varphi}{2} \cos \gamma_{i}-\gamma_{i}^{\circ} \sin \frac{\varphi}{2} \sin \gamma_{i} \\
& (i=1,2,3)
\end{align*}
$$

We call the quantities λ_{j} and $\lambda_{j}^{\circ}(j=0,1,2,3)$ the parameters of the rigid body screw-motion. With due regard to equalities (1.1) the eigenbiquaternion \boldsymbol{A} assumes the form

$$
\begin{aligned}
& \mathbf{\Lambda}=\lambda+s \lambda^{o}, \quad \lambda=\lambda_{0}+\lambda_{0}, \quad \lambda_{0}=\lambda_{1} \mathbf{i}_{1}+\lambda_{2} \mathbf{i}_{2} \div \lambda_{3} \mathbf{i}_{3} \\
& \lambda^{c}=\lambda_{0}^{0}+\lambda_{v}^{0}, \quad \lambda_{v}^{o}=\lambda_{1}^{\circ} \mathbf{i}_{1}+\lambda_{2}^{\circ} \mathbf{i}_{2}+\lambda_{3}^{\circ} \mathbf{i}_{3}
\end{aligned}
$$

Here λ and λ^{\sim} are eigenquaternions. The generator of the instantaneous screw-motion velocity U (the kinematic screw) of the ridid body, relative to pole O_{2} (we can take for it, for example, the body center of mass) is equal to the dual vector $\omega \frac{1}{j} s v / 1 /$. Here v is the velocity vector of point O_{2} of the body relative to basis X, ω is the body angular rotation velocity vector in basis X. Therefore, the dual orthogonal projections $U_{i}(i=1,2$, 3) of the kinematic screw U on the axis of the attached coordinate system are

$$
\begin{equation*}
U_{i}=\omega_{i}+s v_{i} \quad(i=1,2,3) \tag{1,3}
\end{equation*}
$$

where ω_{i} and v_{i} are the projections of vectors ω and v on the attached axis $O_{2} Y_{i}$.
To obtain the kinematic equations of the rigid body screw-motion, which establish the dependence between the dual Rodrigues-Hamilton parameters, their derivatives, and the dual

[^0]orthogonal projections of the kinematic screw on the axes of the attached trihedron, we apply the Kotel'nikov-Study transference principle / / to the kinematic equations of the body spherical motion in terms of real Rodrigues-Hamilton parameters /3-5/. We write the equations thus obtained in two equivalent matrix forms
\[

$$
\begin{align*}
& 2 \Theta^{*}=N_{a} \Theta, \quad 2 N^{\prime}=N_{u} N \tag{1.4}\\
& \Theta^{T}=\left\|\Lambda_{0}, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\|, \quad \Theta^{T}=\left\|\Lambda_{0}^{*}, \Lambda_{1}^{*}, \Lambda_{2}, \Lambda_{3}^{*}\right\| \\
& N=\left\|\begin{array}{|rrrr}
\Lambda_{0} & -\Lambda_{1} & -\Lambda_{2} & -\Lambda_{3} \\
\Lambda_{1} & \Lambda_{0} & \Lambda_{3} & -\Lambda_{2} \\
\Lambda_{2} & -\Lambda_{3} & \Lambda_{0} & \Lambda_{1} \\
\Lambda_{3} & \Lambda_{2} & -\Lambda_{1} & \Lambda_{0}
\end{array}\right\|, \quad N_{u}=\left\|\begin{array}{cccc}
0 & -U_{1} & -U_{2} & \cdots \\
U_{1} & 0 & U_{3} & -U_{2} \\
U_{2} & -U_{3} & 0 & U_{1} \\
U_{3} & U_{2} & -U_{1} & 0
\end{array}\right\|
\end{align*}
$$
\]

Here the dot denotes differentiation with respect to time t and the index T is the transposition symbol. The kinematic Eqs. (1.4) of the body screw-motion are dual matrix homogeneous linear differential equations with variable coefficients. In the first of Eqs. (1.4) we pass from the dual Rodrigues-Hamilton parameters to the real parameters of the body screw-motion using Eqs. (1.1) and (1.3). This results in splitting the dual equation into two real equations

$$
\begin{align*}
& 2 \theta^{\circ}=n_{0} \theta, \quad 2 \theta^{\circ}=n_{\omega} \theta^{\circ}+\|_{v}^{\theta} \tag{1.5}\\
& \theta^{T}=\left\|\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right\|, \quad \theta^{\circ} T=\left\|\hat{\lambda}_{0}^{\circ}, \lambda_{1}^{\circ}, \lambda_{2}^{2}, \lambda_{3}^{\circ}\right\|
\end{align*}
$$

Here the matrices n_{ω} and n_{v} have the structure of matrix N_{u} and are composed of the projections ω_{i} and $v_{i}(i=1,2,3)$ of vectors ω and v on the attached basis.

The first of Eqs. (1.5) is the matrix kinematic equation of the body spherical motion about point O_{2} in real Rodrigues-Hamilton parameters. It is independent of the second equation. The second of Eqs. (1.5) depends on the first but, in constrast to it, is inhomogeneous, defining the translational motion of the body together with pole O_{2}. Equations (1.5), as well as each of the dual equations (1.4), enable us to determine the body's screw-motion from specified projections of vectors 0 and v on the attached basis and fron specified initial conditions for parameters λ_{j} and λ_{j}. The Rodrigues-Hamilton parameters λ_{j} define the body orientation in the support coordinate system, to determine the translational motion of the body it is necessary to use the following formulas

$$
\begin{gathered}
\text { he following formulas } \\
x_{i}, y_{i}=2\left(\lambda_{0} \lambda_{i}^{\circ}-\lambda_{0} \lambda_{i}-+\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j 1} \lambda_{i} \lambda_{i}{ }^{\circ}\right) \quad(i=1,2,3), ~
\end{gathered}
$$

Here x_{i} and $y_{i}(i=1,2,3)$ are the projections of the radius vector r drawn from the origin O_{1} of the coordinate system X to pole O_{2} on the axis of the support basis X and of the attached basis Y; $\varepsilon_{i j k}$ is the Levi-Civita symbol /4/; the plus sign corresponds to x_{i} and the minus sign to y_{i}. In quaternion notation formulas (1.6) become

$$
\begin{align*}
& \mathbf{r}_{X}=2 \lambda^{\circ}{ }_{\circ} \lambda^{*}=2\left(\lambda_{0} \lambda_{v}{ }^{\circ}-\lambda_{0}{ }^{\circ} \lambda_{v}+\lambda_{v} \times \lambda_{v}{ }^{\circ}\right) \tag{1.7}\\
& \mathbf{r}_{Y}=2 \lambda^{*} \mathrm{c} \lambda^{\circ}=2\left(\lambda_{0} \lambda_{v}{ }^{\circ}-\lambda_{0}{ }^{\circ} \lambda_{v}-\lambda_{v} \times \lambda_{v}{ }^{\circ}\right)
\end{align*}
$$

Here $\mathbf{r}_{X}=x_{1} \mathbf{i}_{1}+x_{2} \mathbf{i}_{2}+x_{3} \mathbf{i}_{3}$ and $\mathbf{r}_{Y} \cdots y_{1} \mathbf{i}_{1}+y_{2} \mathbf{i}_{2}+y_{3} \mathbf{i}_{3}$ represent hypercomplex mapping of vector r onto the support and the attached bases $/ 3 /$; The quaternion λ^{*} is adjoint to quaternion λ :
$\lambda^{*}=\lambda_{0}-\lambda_{v}$; the symbol ${ }^{\circ}$ denotes quaternion multiplication; λ_{1} and λ_{v}° are the vector-valued parts of quaternions λ and λ°; the scalar-valued parts of quaternions $\lambda^{*} \lambda^{*}$ and $\lambda^{*} 0 \lambda^{\circ}$ are zero, since $\lambda_{0} \lambda_{0}{ }^{\circ}+\lambda_{1} \lambda_{1}{ }^{a}+\lambda_{2} \lambda_{2}{ }^{\circ}-\lambda_{3} \lambda_{3}{ }^{\circ}=0$.

Fig. 1
2. Let us prove formulas (1.7). A finite displacement of the body is equivalent to one of two sequences of motions (Fig.l):

1) the sequence of the body translational motion at the velocity of pole O_{2}, defined by the screw-motion $\boldsymbol{\theta}_{p}=2 \mathbf{E}_{p} \operatorname{tg}\left(\Phi_{p} / 2\right)=2 \mathbf{E}_{p} \operatorname{tg}\left(s \varphi_{p}^{\circ} / 2\right)$, and of the body spherical motion about pole O_{2}, defined by the screw-motion $\boldsymbol{\theta}_{h}=2 \mathbf{E}_{h} \operatorname{tg}\left(\Phi_{h} / 2\right)=2 \mathbf{E}_{h} \operatorname{tg}\left(\varphi_{h} / 2\right)$;
2) the sequence of the body spherical motion about pole O_{2}, defined by the screw-motion
$\boldsymbol{\theta}_{h}{ }^{\prime}=2 \mathbf{E}_{f^{\prime}} \operatorname{tg}\left(\varphi_{h} / 2\right)$, and of the body translational motion defined by the screw motion $\boldsymbol{\theta}_{p}$.
We illustrate what we have said by the conventional scheme

$$
X \xrightarrow{\ominus} Y \propto X \xrightarrow{\Theta_{p}} Y^{\prime \prime} \xrightarrow{\Theta_{h}} Y \propto X \xrightarrow{\Theta_{h^{\prime}}} Y^{*} \xrightarrow{\Theta_{1}} Y
$$

Here ∞ is the equivalence symbol. With the screw-motions $\boldsymbol{\theta}_{p}$ and $\boldsymbol{\theta}_{h}$ for the first sequence of
displacements and the screw-motions $\boldsymbol{\theta}_{h}^{\prime}$ and $\boldsymbol{\theta}_{p}$ for the second we associate the eigenbiquaternions \mathbf{P}, \mathbf{H} and $\mathbf{H}^{\prime}, \mathbf{P}^{\prime}$

$$
\begin{aligned}
& \mathbf{P}=1+s \mathbf{p}^{\circ}, \quad \mathbf{P}^{\prime}=1+s \mathbf{p}^{\circ}, \quad \mathbf{H}=\mathbf{h}, \quad \mathbf{H}^{\prime}=\mathbf{h}^{\prime} \\
& \mathbf{z}=z_{0}+z_{1} \mathbf{i}_{1}+z_{2} \mathbf{i}_{2}+z_{3} \mathbf{i}_{3} ; \quad \mathbf{z}=\mathbf{p}^{\circ}, \mathbf{p}^{\circ}, \mathbf{h}, \mathbf{h}^{\prime}
\end{aligned}
$$

By the Kotel'nikov-Study transference principle / / / the eigenbiquaternion \boldsymbol{A} of the resulting finite displacement is determined in terms of the eigenbiquaternions of the component displacements by a rule that is the dual analog of the rule for finding the eigenquaternion of the resulting turn from the eigenquaternions of the component turns /3/. Therefore $\boldsymbol{\Lambda}=\mathbf{P} \circ \mathbf{H}=$ $\mathbf{H}^{\prime} \circ \mathbf{P}^{\prime}$ and consequently,

Hence we obtain

$$
\lambda+s \lambda^{\circ}=\left(1+s \mathbf{p}^{\circ}\right) \circ \mathbf{h}=\mathbf{h}^{\prime} \circ\left(1 \cdot s \mathbf{p}^{\circ \prime}\right)
$$

$$
\begin{equation*}
\mathbf{h}=\mathbf{h}^{\prime}=\lambda, \quad \mathbf{p}^{\prime}=\lambda^{\prime} \circ \lambda^{*}, \quad \mathbf{p}^{\prime \prime}-\lambda^{*} \circ \lambda^{\prime} \tag{2.1}
\end{equation*}
$$

The components p_{j}° and $p_{j}^{\circ \prime}(j=0,1,2,3)$ of quaternions p° and p° are found from formulas analogous to (1.2). It should be born in mind that for the motion $\boldsymbol{\theta}_{p}$ being examined the translational motion $\varphi_{p}{ }^{\circ}=r$, the angle of turn φ_{p} and the shortest distance $\beta_{i}{ }^{n}$ ($\beta_{i}{ }^{n \prime}$) between axis $O_{1} X_{i}\left(O_{2} Y_{i}\right)$ and the axis of screw-motion θ_{p} are zero, and the direction cosines cos β_{i} and $\cos \beta_{i}^{\prime}(i=1,2,3)$ between the axis of screw-motion θ_{p} and the axes of the support basis X and of the connected basis Y equal the corresponding direction cosines of vector r in the same bases because the axis of screw-motion $\boldsymbol{\theta}_{p}$ passes through the origin of coordinate systems X and Y and coincides with the straight line on which vector \mathbf{r} lies. Therefore

$$
\begin{align*}
& \mathbf{p}^{\circ}=\frac{1}{2} \sum_{k=1}^{3} x_{k} \mathbf{i}_{k}, \quad \mathbf{p}^{\circ}=\frac{1}{2} \sum_{k=1}^{3} y_{k} \mathbf{i}_{k} \tag{2.2}\\
& x_{k}=r \cos \beta_{k}, \quad y_{k}=r \cos \beta_{k}^{\prime}
\end{align*}
$$

From (2.2) we see that the hypercomplex images $\mathbf{r}_{\boldsymbol{X}}$ and r_{Y} of vector \mathbf{r} are related to quaternions \mathbf{p}° and \mathbf{p}° by the equalities $\mathbf{r}_{X}=2 \mathbf{p}^{\circ}, \mathbf{r}_{Y}=2 \mathbf{p}^{\circ}$. Then allowing for (2.1), we obtain formulas (1.7). Note that, if one of the hyper-complex images of vector r, say r_{X}, has been established, its other hypercomplex image r_{Y} can be found by using the following coordinate transformation rule for a fixed vector on the support and attached bases /3/

$$
\mathbf{r}_{Y}=\lambda^{*} \circ \mathbf{r}_{X} \circ \lambda
$$

Having substituted the equality $\quad r_{X}=2 \lambda^{\circ} \circ \lambda^{*}$ into this relation, we arrive at an expression for r_{Y}, which coincides with the second expression obtained in (1.7).
3. Let us consider the integration of the first matrix dual kinematic equation in (1.4) for the body screw-motion. In this equation we assume that the elements $U_{i}=\omega_{i}+s v_{i}$ of the dual matrix of coefficients N_{u} are known time functions, since the projections ω_{i} and v_{i} of vectors $\boldsymbol{\omega}$ and v on the axis attached to the body can either be measured or be obtained, for example, from a navigation system. The structure of the general solution for the first equation in (1.5) has been indicated in $/ 6 /$. On the basis of the Kotel'nikov-Study transference principle we extend this result to the first equation in (1.4), which is the dual analog of the first equation in (1.5). As a result we obtain the following structure for the general solution $\theta=\theta(t)$ of the first of Eqs. (1.4).

$$
\begin{equation*}
\theta=N^{+} \Theta_{0} \tag{3.1}
\end{equation*}
$$

Here $\Theta_{0}^{T}=\Theta^{T}\left(t_{0}\right)=\left\|\Lambda_{00}, \Lambda_{10}, \Lambda_{20}, \Lambda_{30}\right\|^{T}$ and N^{+}is the matrizant of the second dual matrix equation in (1.4). It is made up of elements $\Lambda_{j}^{+}(j=0,1,2,3)$ and has the structure of matrix N.

Applying the Kotel'nikov-Study transference principle to another result in /6/, concerning the integrability of the first equation in (1.5), we establish that the first equation in (1.4) can be integrated in quadratures when the kinematic screw

$$
\begin{align*}
& \mathbf{U}=F(t)\left[D_{1} \mathbf{E}_{1}^{\prime}+Q_{1}\left(\cos (A+B) \mathbf{E}_{2}^{\prime}+\sin (A+B) \mathbf{E}_{3}{ }^{\prime}\right)\right] \tag{3.2}\\
& A(t)=A_{1} \int_{t_{0}}^{t} F(t) d t
\end{align*}
$$

Here $E_{i}{ }^{\prime}(i=1,2,3)$ are unit screw-turns of the attached coordinate system; $D_{1}=d_{1}+s d_{1}{ }^{\circ}$,
$Q_{1}=q_{1}+s q_{1}{ }^{\circ}, \quad A_{1}=\alpha_{1}+s \alpha_{1}{ }^{\circ}, \quad B=\beta+s \beta^{\circ}$ are certain dual constants; $F^{\prime}(t)=f(t)+s f^{\circ}(t)$ is an arbitrary dual time function bounded and integrable on the interval $\left[t_{1}\right.$, $\left.t_{2}\right]$ being examined. To a kinematic screw of form (3.2) correspond the body angular rotation velocity vector ω and the velocity vector v of pole O_{2}, of the form (e_{1}, e_{2}, e_{3} are unit vectors of the connected trinedron $\quad \omega=f(t)\left[d_{1} \mathbf{e}_{1}^{\prime}+q_{1}\left(\mathbf{e}_{2}^{\prime} \cos \tau+\mathbf{e}_{3}{ }^{\prime} \sin \tau\right)\right]$
$\mathbf{v}=a^{\prime} \mathbf{e}_{1}^{\prime}+\left(b^{\prime} \cos \tau-c^{\prime} \sin \tau\right) \mathbf{e}_{2}^{\prime}+\left(b^{\prime} \sin \tau+c^{\prime} \cos \tau\right) \mathbf{e}_{3}^{\prime}$
$a^{\prime}(t)=d_{1}^{\circ} f(t)+d_{1} f^{\circ}(t), b^{\prime}(t)=q_{1}{ }^{\circ} f(t)+q_{1} f^{\circ}(t)$

$$
\tau(t)=\alpha_{1} \int_{t_{0}}^{t} f(t) d t+\beta, c^{\prime}(t)=
$$

$$
q_{1} f(t)\left[\alpha_{1} \int_{i_{0}}^{t} f(t) d t \quad \alpha_{1} \int_{i_{0}}^{t} f^{c}(t) d l+\beta\right]
$$

The general solution of the first of Eqs. (1.4) for a kinematic screw of form (3.2) is given by relation (3.1) in which the elements $\lambda_{j}^{+}(j=0,1,2,3)$ of matrix N^{+}are

$$
\begin{align*}
& \Lambda_{0}^{+}=\cos \frac{A}{2} \cos \frac{K}{2}+\frac{D_{1}+A_{1}}{U^{\prime}} \sin \frac{A}{2} \sin \frac{K}{2} \tag{3.3}\\
& \Lambda_{1}^{+}=\frac{D_{1}-A_{1}}{U^{\prime}} \cos \frac{A}{2} \sin \frac{K}{2} \quad \sin \frac{1}{2} \cos \frac{K}{2} \\
& \Lambda_{2}^{+}=\frac{Q_{1}}{U^{\prime}} \cos \left(\frac{A}{2}+B\right) \sin \frac{K}{2}, \quad \Lambda_{3}^{+}=\frac{Q_{1}}{U^{\prime}} \sin \left(\frac{A}{2}-B\right) \sin \frac{K}{2} \\
& K=U^{\prime} \int_{t_{0}}^{t} F(t) d t, \quad U^{\prime}=\left[\left(D_{1}+A_{1}\right)^{2} \perp Q_{1}^{2}\right]^{1 / 2}
\end{align*}
$$

This general solution is the dual analog of the general solution obtained in /6/ for the first of Eqs. (1.5).

The following are particular cases of the integrability of the first equation in (1.4).

1) 'lhe kinematic screw U of the body performs a conic motion relative to the attached coordinate system. This case obtains if we set $F(t)=1$ and $B=0$ in the expression (3.2) for the kinematic screw. Then

$$
\begin{aligned}
& \mathrm{U}=D_{1} \mathrm{E}_{1}^{\prime} \quad Q_{1}\left\{\cos \left[A_{1}\left(t-t_{0}\right)\right] \mathrm{E}_{2}^{\prime}+\sin \left[A_{1}\left(t-t_{0}\right)\right] \mathbf{E}_{3}\right\} \\
& \omega=d_{1} \mathrm{e}_{1}^{\prime} \cdot q_{\mathrm{I}}\left\{\cos \left[\alpha_{1}\left(t-t_{0}\right)\right] \mathbf{e}_{2}^{\prime}+\sin \left[\alpha_{1}\left(t-t_{0}\right)\right] \mathbf{e}_{3}\right\} \\
& \mathbf{v}=a_{1}{ }^{\circ} \mathrm{e}_{1}^{\prime} \quad\left\{q_{1}^{\circ} \cos \left[\alpha_{1}\left(t-t_{0}\right)\right]-q_{1} \alpha_{1}{ }^{\circ}\left(t-t_{0}\right) \sin \left[\alpha_{1}\left(t-t_{1}\right)\right] \mathrm{e}_{3}^{\prime}\right. \\
& \\
& \left\{q_{1}{ }^{\circ} \sin \left[\alpha_{1}\left(t-t_{0}\right)\right]\right.
\end{aligned}
$$

To obtain the general solution of the first equation in (1.4) we also have to set $F(t)=1$ and $B=0$ in (3.3) as well.
2) The kinematic screw U of the body retains a fixed position in the attached coordinate system, changing only in modulus. In this case the kinematic screw u is obtained from (3.2) with $A_{1}=0$

$$
\begin{equation*}
\mathrm{U}=F(t)\left\{D_{1} \mathrm{E}_{1}^{\prime}+Q_{1}\left[\mathbf{E}_{2}^{\prime} \cos B \because \mathrm{E}_{3}^{\prime} \text { sin } B\right]\right\} \tag{3.4}
\end{equation*}
$$

To this kinematic screw correspond the body angular velocity vector $\boldsymbol{\omega}$ and the velocity vector v of pole θ_{2} of the body, which are of the form

$$
\begin{aligned}
& \left.a^{\prime}(t) \cdots a_{1}^{\prime}\right)(t)-y_{1} f^{\prime}(t), b^{\prime}(t)-q_{1} \beta^{\circ} f(n)
\end{aligned}
$$

Let us consider in detail the conditions to be imposed on vectors ω and v, under which the kinematic screw of the body retains its position in the attached basis but can change its modulus. The dual direction cosines of the screw u of form (3.4) in the axes of the attached base are defined by the equalities

$$
\begin{equation*}
\cos B_{i} \cdots U_{i} / I=c_{i} \cdots c_{i} \quad s c_{i}^{0} \quad(i=-=1,2,3) \tag{3.6}
\end{equation*}
$$

Here $U \cdot\left(U_{1}^{2}+U_{2}^{2}-U_{3}^{2}\right)^{2}$ is the dual modulus of screw U, U_{i} are dual constants expressed in terms of the dual constants $V_{1}, Q_{1}, B ; c_{1}$ and $c_{i}{ }^{\circ}$ are real constants defined in terms of constants $a_{1}, q_{1}, \beta, d_{1} \cdot q_{1} . \beta$. From (3.6) and (1.3) we obtain

$$
\begin{equation*}
\cos B_{i}==c_{i}+s c_{i}^{0}=\omega^{-1} \omega_{i}+s\left[\omega^{-1} c_{i}-\omega^{-3}(\omega \cdot v)^{\prime} \omega_{i}\right], \quad \omega==\mid \omega_{i}^{\prime} \neq \tag{3.7}
\end{equation*}
$$

From (3.7) we find

$$
\begin{equation*}
\omega^{-1} \omega \quad c, \quad \omega^{-1} v-\omega^{-3}(\omega \cdot v) \omega=c^{\infty} \tag{3.8}
\end{equation*}
$$

Here c and e^{c} are vectors fixed in the attached coordinate system, whose projections on the axis of this basis are equal c_{i} and $c_{i}^{\prime \prime}(i=1,2,3)$. Scalar multiplication of both sides of the second of Eqs. (3.8) by vector ω, yields $\mathbf{c}^{\circ} \cdot \omega=0$. Since generally, $\left|\mathbf{e}^{\circ}\right| \neq 0$ and $|\omega| \neq 0$ hence vectors \mathbf{c}° and ω are perpendicular. We construct the vector

$$
w^{-1} \mathbf{v}=e^{\circ} \because \boldsymbol{\eta}, \quad \eta=\left(\omega^{-3}(\omega \cdot \mathbf{v}) \omega\right.
$$

Vector e° is constant in magnitude and retains its direction in the attached basis. In this basis the vector η is constant in direction but variable in modulus. The hodograph of vector $\omega^{-1} v$ is a straight line parallel to vector ω lying in the plane formed by vectors e° and $\eta(\omega)$. This plane is fixed relative to the attached coordinate system. In the general case the vector
\mathbf{v}, whose in direction coincides with that of vector $w^{-1} \mathbf{v}$, generally changes its orintation relative to the attached system. Thus, in order that the kinematicscrew u of the body retains its position in the attached system, while being able to change in modulus, it is necessary and sufficient that the body angular velocity vector ω retains its direction in the attached coordinate system, i.e., that the first equality in (3.8) be fulfilled and that the velocity vector v of the body pole σ_{2} satisfies the second equation in (3.8), in which c° is some vector constant in the attached coordinate system, and is perpendicular to vector o. In this
case the hodograph of vector $\omega^{-1} v$ is a straight line parallel to vector ω and vector v, in contrast to vector ω, can change not only its modulus but also its direction with respect to the attached trihedron.

Note that for the fulfilment of conditions (3.8) it is sufficient that vectors m and v retain theirorientation unchanged in the attached basis and their moduli be directly proportional. The expressions for vectors ω and v in this particular case are obtained from formulas (3.5) with $f(t)=f^{\circ}(t)$. The general solution of the first of Eqs. (1.4) for a kinematic screw of form (3.4) is given by relation (3.1). The dual elements $\Lambda_{j}{ }^{+}$of the matrix N^{+}in (3.1) are obtained from formulas (3.3) with $A_{1}=0$.

Fassing from the dual quantities to real ones, we find that the real Rodrigues-Hamilton parameters define the body's orientation in the support basis are determined in this case by the matrix relation

$$
\left\|\lambda_{\mathrm{n}}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right\|^{T}=\left\|\lambda_{00}, \lambda_{10}, \lambda_{20}, \lambda_{30}\right\| n^{+r}
$$

in which the matrix n^{+}is composed of elements

$$
\begin{equation*}
\lambda_{0}+=\cos \frac{1}{2} \int_{t_{0}}^{t} \omega d t, \quad \lambda_{i}^{+}=\omega^{-1} \omega_{i} \sin \frac{1}{2} \int_{i_{0}}^{t} \omega d t \quad(i=1,2,3) \tag{3.9}
\end{equation*}
$$

The moment-valued parts $\lambda_{j}{ }^{+}$of the dual parameters $\Lambda_{j}{ }^{+}$, that define the body translational motion, have the form

$$
\begin{aligned}
& \lambda_{0}{ }^{0}+=-1 / 2 \varphi^{0} \sin (\varphi / 2) \\
& \lambda_{i}^{0+}=1 / 2 \varphi^{\circ} \omega^{-1} \omega_{i} \cos (\varphi / 2)+\left[\omega^{-1} v_{i}-\omega^{-3}(\omega \cdot v) \omega_{i}\right] \sin (\varphi / 2) \\
& \varphi=\int_{i_{0}}^{t} \omega d t, \quad \Psi^{\circ}=\int_{t_{0}}^{t} \omega^{-1}(\omega \cdot v) d t
\end{aligned}
$$

Using the second formula in (1.7) and the rule for finding the eigenbiquaternion of the resulting displacement in terms of the eigenbiquaternions of the component displacements, we find that

$$
\begin{equation*}
\mathbf{r}_{Y}=\mathbf{r}_{0 Y}+2 \lambda^{++*_{c}} \boldsymbol{\lambda}^{0+} \tag{3.11}
\end{equation*}
$$

Here $r_{0 Y}$ is the hypercomplex mapping of vector $\mathbf{r}_{u}-\mathbf{r}\left(t_{0}\right)$ onto the connected basis; λ^{+}and $\lambda^{\circ+}$ are quaternions whose components are the quantities $\lambda_{j}{ }^{+}$and $\lambda_{j}{ }^{+}(j=0,1,2,3)$. As follows from (3.9) and (3.10), the vector-valued parts of quaternions λ^{+}and $\lambda^{\circ+}$ are defined in the attached basis. The hypercomplex images r_{Y} and $r_{0 Y}$ are defined in this same basis. Therefore, the unit vectors i_{1}, i_{2}, i_{3} of the hypercomplex space can be combined with the unit vectors of the attached basis. Equality (3.11) then becomes a usual vector equality. Transforming it with due regard to (3.8)-(3.10), we obtain

$$
\begin{equation*}
\mathbf{r}=\mathbf{r}_{0} \div \varphi^{\circ} \mathbf{c} \sin \varphi r^{\circ}+2 \sin ^{2}(\varphi / 2) \mathrm{c}^{\circ} \times \mathrm{c} \tag{3.12}
\end{equation*}
$$

Thus, Eqs. (3.9) and (3.12) describe the motion of the rigid body when its kinematic screw u is of form (3.4), i.e., when vectors ω and v satisfy conditions (3.8).

REFERENCES

1. DIMENTBERG, F. M., Theory of Screws and Its Applications. Moscow, "Nauka", 1978.
2. KOTEI'NIKOV, A. N., Cross-Product Calculus and Some of Its Applications to Geometry and Mechanics. Kazan', 1895.
3. BRANETS, V. N. and SHMYGLEVSKII, I. P., Application of Quaternions in Rigid Body Orientation Problems. Moscow, "Nauka", 1973.
4. LUR'E A. I., Analytical Mechanics. Moscow, Fizmatgiz, 1961.
5. ISHLINSKII, A. Iu., Orientation, Gyroscopes and Inertial Navigation. Moscow, "Nauka",1976.
6. CHELNOKOV, Iu. N., On determining vehicle orientation in the Rodrigues-Hamilton parameters from its angular velocity. Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 1977.

[^0]: *Prikl.Matem.Mekhan., 44,No.1,pp.32-39

